各种元素对钢铁性能的影响(下)

21.元素:镓(Ga)

对钢铁性能的影响:
镓在钢中是封闭γ区的元素。微量镓易固溶于铁素体中,形成代位式固溶体。它不是碳化物形成元素,同时也不形成氧化物、氮化物、硫化物。在γ+a两相区时,微量镓易于从奥氏体向铁素体扩散,它在铁素体中浓度高。微量镓对钢的力学性能的影响主要是固溶强化。镓对钢的耐腐蚀性有很小的改善作用。

22.元素:砷(As)

对钢铁性能的影响:
矿石中的砷在烧结过程中只能除去一部分,也可以用氯化焙烧方法去除,砷在高炉冶炼过程中全部还原进入生铁中,钢中含砷大于0.1%以上时,使钢增加脆性并使焊接性能变坏。应控制矿石中砷含量,要求矿石中含砷量不应超过0.07%。

砷有提高低碳圆钢屈服点σs、抗拉强度σb 和降低延伸率δ5的倾向,降低普碳圆钢常温冲击韧性Akv的作用较明显。

23.元素:硒(Se)

对钢铁性能的影响:
硒可以改善碳素钢、不锈钢和铜的切削加工性能,零件表面光洁。

高磁感取向硅钢中常以MnSe2作抑制剂,MnSe2有益夹杂要比 MnS 有益夹杂对初次再结晶晶粒长大的抑制作用更强、更有利于促进二次再结晶晶粒择优长大,从而可获得高取向(110)[001]织构。

24.元素:锆(Zr)

对钢铁性能的影响:
锆是强碳化物形成元素,它在钢中的作用与铌、钽、钒相似。加入少量锆有脱气、净化和细化晶粒作用,有利于钢的低温性能,改善冲压性能,它常用于制造燃气发动机和弹道导弹结构使用的超高强度钢和镍基高温合金中。

25.元素:铌(Nb)

对钢铁性能的影响:
铌常和钽共生,它们在钢中的作用相近。铌和钽部分溶入固溶体,起固溶强化作用。溶入奥氏体时显著提高钢的淬透性。但以碳化物和氧化物微粒形式存在时,细化晶粒并降低钢的淬透性。它能增加钢的回火稳定性,有二次硬化作用。微量铌可以在不影响钢的塑性或韧性的情况下提高钢的强度。由于有细化晶粒的作用,能提高钢的冲击韧性并降低其脆性转变温度。当含量大于碳的8倍时,几乎可以固定钢中所有的碳,使钢具有良好的抗氢性能。在奥氏体钢中可以防止氧化介质对钢的晶间腐蚀。由于固定碳和沉淀硬化作用,能提高热强钢的高温性能,如蠕变强度等。

铌在建筑用普通低合金钢中能提高屈服强度和冲击韧性,降低脆性转变温度有益焊接性能。在渗碳及调质合金结构钢中在增加淬透性的同时。提高钢的韧性和低温性能。能降低低碳马氏体耐热不锈钢的空气硬化性,避免硬化回火脆性,提高蠕变强度。

26.元素:钼(Mo)

对钢铁性能的影响:
钼在钢中能提高淬透性和热强性,防止回火脆性,增加剩磁和矫顽力以及在某些介质中的抗蚀性。

在调质钢中,钼能使较大断面的零件淬深、淬透,提高钢的抗回火性或回火稳定性,使零件可以在较高温度下回火,从而更有效地消除(或降低)残余应力,提高塑性。

在渗碳钢中钼除了具有上述作用外,还能在渗碳层中降低碳化物在晶界上形成连续网状的倾向,减少渗碳层中残留的奥氏体,相对地增加了表面层的耐磨性。

在锻模钢中,钼还能保持钢有比较稳定的硬度,增加对变形??押湍ニ鸬鹊目沽?。

在不锈耐酸钢中,钼能进一步提高对有机酸(如蚁酸、醋酸、草酸等)以及过氧化氢、硫酸、亚硫酸、硫酸盐、酸性染料、漂白粉液等的抗蚀性。特别是由于钼的加入,防止了氯离子的存在所产生的点腐蚀倾向。含1%左右钼的W12Cr4V4Mo高速钢具有耐磨性、回火硬度和红硬性等。

27.元素:锡(Sn)

对钢铁性能的影响:
锡一直作为钢中的有害杂质元素,它影响钢材质量,尤其是连铸坯质量,使钢产生热脆性、回火脆性,产生裂纹和断裂,影响钢的焊接性能,是钢铁“五害”之一。然而锡在电工钢、铸铁、易切削钢中却有很重要的作用。

硅钢晶粒的尺寸大小与锡的偏析有关,锡的偏析阻碍了晶粒的长大。锡含量越高,晶粒析出量越大,有效阻碍晶粒的长大。锡含量越高,晶粒析出量越大,阻碍晶粒长大能力越强,晶粒越小,铁损越少。锡可以改变硅钢的磁性,提高取向硅钢成品中的有利织构{100}强度,磁感应强度明显增加。

当铸铁中含有少量锡时,即能改善其耐磨性,又可影响铁水的流动性。珠光体球磨铸铁具有高强度、高耐磨性,为了得到铸态珠光体,熔炼时在合金液中加入锡。由于锡是阻碍石墨球化的元素,所以要控制加入量。一般控制在≤0.1%。

易切削钢可分为硫系、钙系、铅系及复合易切削钢。锡有着往夹杂物和缺陷附近偏聚的明显倾向。锡并不能改变钢中硫化物夹杂的形状,而是通过晶界和相界的偏析来提高脆性,改善钢材易切削性能,锡含量>0.05%时,钢材有很好的切削性。

28.元素:锑(Sb)

对钢铁性能的影响:
高磁感取向硅钢中加Sb后,初次再结晶及二次再结晶晶粒尺寸细化,二次再结晶组织更为完善,磁性改善。含Sb钢在冷轧及脱碳退火后,,在其织构组分中,有利于发展二次再结晶的组分{110}〈115〉或{110}〈001〉增强,二次晶校数量增多。

含Sb建筑焊接钢中,奥氏体温度下,钢中的Sb在Mn S夹杂物处以及沿原奥氏体晶界处析出,增加在Mn S夹杂物上富集析出,可使钢的组织得到细化并提高韧性。

29.元素:钨(W)

对钢铁性能的影响:
钨在钢中除形成碳化物外,部分地溶入铁中形成固溶体。其作用与钼相似,按质量分数计算,一般效果不如钼显著。钨在钢中主要样图是增加回火稳定性、红硬性、热强性以及由于形成碳化物而增加的耐磨性。因此它的主要用于工具钢,如高速钢、热锻模具用钢等。

钨在优质弹簧钢中形成难熔碳化物,在较高温度回火时,能缓解碳化物的聚集过程,保持较高的高温强度。钨还可以降低钢的过热敏感性、增加淬透性和提高硬度。65SiMnWA弹簧钢热轧后空冷就具有很高的硬度,50mm2截面的弹簧钢在油中即能淬透,可作承受大负荷、耐热(不大于350℃)、受冲击的重要弹簧。30W4Cr2VA高强度耐热优质弹簧钢,具有大的淬透性,1050~1100℃淬火,550~650℃回火后抗拉强度达1470~1666Pa。它主要用于制造在高温(不大于500℃)条件下使用的弹簧。

由于钨的加入,能显著提高钢的耐磨性和切削性,所以,钨是合金工具钢的主要元素。

30.元素:铅(Pb)

对钢铁性能的影响:
铅可以改善切削加工性。铅系易切削钢有良好的力学性能和热处理性。由于污染环境以及在废钢回收熔炼过程中的有害作用,铅有被逐渐替代的趋势。

铅与铁难以形成固溶体或化合物,易以球状偏聚于晶界,是钢在200~480℃产生脆性及焊缝产生裂纹的根源之一。

元素31:Bi(铋)

对钢铁性能的影响:
在易切削钢中加入0.1~0.4的铋,可改善钢的切削性能。当铋均匀分散在钢中时,微粒铋与切削工具接触后熔化,起润滑剂作用,并且使切削断裂,避免过热,从而可提高切削转速。最近已大量在不锈钢中添加铋,以改善不锈钢的切削性能。

Bi在易切削钢中以3种形态存在:单独存在于钢基体中、被硫化物包裹和介于钢基体与硫化物之间。S-Bi易切削钢铸锭中,MnS夹杂物的变形率随Bi含量增加而降低。钢中Bi金属在钢锭锻造过程中可起到抑制硫化物变形的作用。

在铸铁中加入0.002-0.005%的铋,可改善可锻铸铁的铸造性能,增加白口倾向和缩短退火时间,零件的延伸性能变优。在球墨铸铁中加入0.005%的铋可改善其抗震性和抗拉伸性。在钢铁中添加铋存在一定难度,因为在1500℃时铋已大量挥发,难以均匀地将铋渗到钢铁中去。目前国外用熔点1050℃的Bi- Mn合盘代替铋作添加剂,但铋的利用率仍仅有20%左右。

新日铁、浦项制铁、川崎制铁等企业先后提出加Bi可明显提高取向硅钢B8值。据统计,新日铁、JFE加Bi生产高磁感取向硅钢的发明总数已超过百项,加Bi后,磁感达到1.90T以上,最高时达到1.99T。

其他元素:Re稀土

对钢铁性能的影响:
一般所说的稀土元素,是指元素周期表中原子序数从57号至71号的镧系元素(镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)加上21号钪和39号钇,共17个元素。他们的性质接近,不易分离。未分离的叫混合稀土,比较便宜,稀土在钢中可以脱氧,脱硫,微合金化也能改变稀土夹杂物的变形能力。尤其是在一定程度上对脆性的Al2O3起变性作用,可改善大部分钢种的疲劳性能。

稀土元素像Ca、Ti、Zr、Mg、Be一样,它是硫化物最有效的变形剂。在钢中加入适量的RE能使氧化物和硫化物夹杂物变成细小分散的球状夹杂物从而消除MnS等夹杂的危害性。在生产实践中,硫在钢中以FeS、MnS形式存在,当钢中Mn高时,MnS的形成倾向就高。虽然其熔点较高能避免热脆的产生,但MnS在加工变形时能沿着加工方向延伸成带状,钢的塑性,韧性,及疲劳强度显著降低,因此钢中加入RE进行变形处理比较必须的。

稀土元素也可以提高钢的抗氧化性和抗腐蚀性??寡趸缘男Ч?、铝、钛等元素。它能改善钢的流动性,减少非金属夹杂,使钢组织致密、纯净。

稀土在钢中的作用主要有净化,变质和合金化。随着氧硫含量逐渐控制,传统的净化钢水和变质作用日益减弱,代之而起的更完善的洁净化技术和合金化作用。

稀土元素在铁铬铝合金中增加合金的抗氧能力,在高温下保持钢的细晶粒,提高高温强度,因而使电热合金的寿命得到显著提高。

各种元素对钢铁性能的影响(上)
各种元素对钢铁性能的影响(中)